



## Adversarial Example Detection

马兴军 , 复旦大学 计算机学院



#### 1. Adversarial Examples

2. Adversarial Attacks

3. Adversarial Vulnerability Understanding



## **In-class Adversarial Attack Competition**



https://codalab.lisn.upsaclay.fr/competitions/15669?secret\_key=77cb8986-d5bd-4009-82f0-7dde2e819ff8



## **In-class Adversarial Attack Competition**

| NUNIVER                | 2023 Fudan University                                                       |                                                                             | 第一学期 2023年8月27日至2024年1月61                     |      |        |       |        |                                           |      |                                                         |
|------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|------|--------|-------|--------|-------------------------------------------|------|---------------------------------------------------------|
|                        | Secret url: https://codalab.lis                                             |                                                                             | 周次日                                           | - :  | = =    | 四 3   | ī 📩    | 备注                                        |      |                                                         |
|                        | Organized by hanxunn - Current server                                       |                                                                             | 0 8/27                                        | 28 2 | 29 30  | 31 9/ | 1 2    | 1. 2023级本科生8月27日报到,<br>2月20日至2日4日) 世林帝, 0 |      |                                                         |
| 1005                   | First phase                                                                 | End                                                                         |                                               |      | 1 3    | 4     | 5 6    | 7 8                                       | 3 9  | 8月28日至9月1日八字教育,9<br>月4日上课。                              |
| 00                     | Phase 1                                                                     | Competition Ends                                                            |                                               |      | 2 10   | 11 1  | 12 13  | 14 1                                      | 5 16 | 2. 2023级研究生8月26日报到,                                     |
|                        | Oct. 1, 2023, 4 p.m. UTC                                                    | Nov. 5, 2023, 11:59 p.m. UTC                                                |                                               |      | 3 1/   | 18    | 19 20  | 21 2                                      | 2 23 | 8月28日至9月1日入学教育,9<br>月4日上课。                              |
|                        |                                                                             |                                                                             |                                               |      | 5 10/1 | 2     | 3 4    | 5 6                                       | 30   | *利生老生徒上中请补考 9月                                          |
| Learn the Details      | Phasas Participata Posu                                                     | ltc                                                                         |                                               |      | 6 8    | 9 .   | 10 11  | 12 1                                      | 3 14 | 30日至9月3日补考,9月3日注                                        |
|                        |                                                                             |                                                                             |                                               |      | 7 15   | 16    | 17 18  | 19 2                                      | 0 21 | 册,9月4日上课。                                               |
|                        |                                                                             |                                                                             |                                               |      | 8 22   | 23 2  | 24 25  | 26 2                                      | 7 28 | <ol> <li>研究生老生线上申请补考,8月<br/>30日至9月3日补考,9月1日注</li> </ol> |
| Phase 1                |                                                                             |                                                                             |                                               |      | 9 29   | 30 3  | 31 11/ | 123                                       | 3 4  | 册,9月4日上课。                                               |
| Start: Oct. 1, 2023, 4 | p.m.                                                                        |                                                                             |                                               |      | 10 5   | 6     | 7 8    | 9 1                                       | 0 11 | 5. 2023级本科生、研究生开学典                                      |
|                        |                                                                             |                                                                             |                                               |      |        |       |        | 16 1                                      | 7 18 | 化于弗U周平行。                                                |
| Description: Create    | an attack method and submit the co<br>rest images. We will test your code o | de as submission. Your code should follows ti<br>n 1 robustly trained model | ie submission template. Feedback will be      |      | 12 19  | 20 2  | 21 22  | 23 2                                      | 4 25 | <ol> <li>中秋节、国庆节、元旦节放假以<br/>学校办通知为准。</li> </ol>         |
| provided on the dift   |                                                                             |                                                                             |                                               |      | 13 26  | 27 2  | 28 29  | 30 12                                     | /1 2 | 7 通识教育课程老试会排在第                                          |
|                        |                                                                             |                                                                             |                                               |      | 14 3   | 4     | 5 6    | 7 8                                       | 3 9  | 16周,第17、18周为停课考                                         |
| Phase 2                |                                                                             |                                                                             |                                               |      | 15 10  | 11 '  | 12 13  | 14 1                                      | 5 16 | 试周。                                                     |
| Start: Nov. 1, 2023, 4 | 4 p.m.                                                                      |                                                                             |                                               |      | 16 17  | 18    | 19 20  | 21 2                                      | 2 23 | <ol> <li>第一学期于2024年1月6日结<br/>束,共计18教学周(包括考)</li> </ol>  |
| Description: Your co   | I will be evaluated in th                                                   | is phase. Feedback will be provided on all tes                              | images. We will test your code on 4 robustly  |      | 1/ 24  | 20 4  | 20 21  | 28 2                                      | 9 30 | 试)。                                                     |
| trained model.         |                                                                             | s phase. I ceuback will be provided off all tes                             | innages, we will test your code on 4 lobustly |      | 10 31  | ., 1  | 2 3    |                                           |      | _                                                       |



### **In-class Adversarial Attack Competition**

- Adversarial attack competition (account for 30%)
  - 必须使用复旦邮箱注册比赛(否则无成绩)
  - 比赛时间:
    - Phase 1: 10月1号 10月28号
    - Phase 2:评估阶段,学生不参与

□ 按排名算分:

- 第一名30分
- 最后一名15分

#### 没卡的同学建议使用Google Colab : <u>https://colab.research.google.com/</u>



## Adversarial Example Detection (AED)



A binary classification problem: clean (y=0) or adv (y=1)?
 An anomaly detection problem: benign (y=0) or abnormal (y=1)?





#### □All binary classification methods can be applied for AED





□ All anomaly detection methods can be applied for AED



- Input statistics
- Manual features
- Training data
- Attention map
- Transformation
- ≻ Mixup

Denoising



Activations

- Deep features
- Probabilities
- Logits

▶ ...

- Gradients
- Loss landscape
- Uncertainty

□ Use as much information as you can





#### **Twins**

#### **Strangers**

**Extremely close to the clean sample** 

Far away in prediction

**D**Leverage unique characteristics of adversarial examples





**High dimensional pockets** 

Local linearity

**Tilting boundary** 

**D**Build detectors based on existing understandings



## It's is still feature engineering!



- The diversity of adversarial examples used for training the detectors determine the detection performance
- Detectors are also machine learning models: they are also vulnerable to adversarial attacks
- **D** The detectors need to detect both existing and **unknown** attacks
- □ The detectors need to be **robust to adaptive attacks**



## **Existing Methods**

- □ Secondary Classification Methods (二级分类法)
- □ Principle Component Analysis (主成分分析法, PCA)
- □ Distribution Detection Methods (分布检测法)
- □ Prediction Inconsistency (预测不一致性)
- □ Reconstruction Inconsistency (重建不一致性)
- □ Trapping Based Detection (诱捕检测法)



## **Existing Methods**

#### □ Secondary Classification Methods (二级分类法)

- Principle Component Analysis (主成分分析法, PCA)
- Distribution Detection Methods (分布检测法)
- Prediction Inconsistency (预测不一致性)
- Reconstruction Inconsistency (重建不一致性)
- Trapping Based Detection (诱捕检测法)



### Secondary Classification Methods

#### Adversarial Retraining (对抗重训练)

- 1. 在正常训练集  $D_{\text{train}}$  上训练得到模型 f
- 2. 基于  $D_{\text{train}}$  对抗攻击模型 f 得到对抗样本集  $D_{\text{adv}}$
- 3. 将 D<sub>adv</sub> 中的所有样本标注为 C+1 类别
- 4. 在  $D_{\text{train}} \cup D_{\text{adv}}$  上训练得到  $f_{\text{secure}}$

Take adversarial examples as a new class



### Secondary Classification Methods

Adversarial Classification (对抗分类)

1. 在正常训练集  $D_{\text{train}}$  上训练得到模型 f

2. 基于 D<sub>train</sub> 对抗攻击模型 f 得到对抗样本集 D<sub>adv</sub>

3. 将 D<sub>train</sub> 标记为 0 类别,将 D<sub>adv</sub> 标注为 1 类别

4. 在  $D_{\text{train}} \cup D_{\text{adv}}$  上训练得到二分类检测器 g

Clean samples as class 0, adversarial as class 1



Gong et al. Adversarial and clean data are not twins, arXiv:1704.04960

### **Secondary Classification Methods**

Cascade Classifiers (级联分类器)



**Training a detector for each intermediate layer** 



Metzen, Jan Hendrik, et al. "On detecting adversarial perturbations." arXiv preprint arXiv:1702.04267 (2017).

## **Existing Methods**

■ Secondary Classification Methods (二级分类法)

- Principle Component Analysis (主成分分析法, PCA)
- Distribution Detection Methods (分布检测法)
- Prediction Inconsistency (预测不一致性)
- Reconstruction Inconsistency (重建不一致性)
- Trapping Based Detection (诱捕检测法)



## Principle Component Analysis (PCA)





Yellow: an adv example





An artifact caused by the black background

**D**The last few components differentiate adversarial examples

Hendrycks, Dan, and Kevin Gimpel. "Early methods for detecting adversarial images." arXiv:1608.00530 (2016); Carlini and Wagner. "Adversarial examples are not easily detected: Bypassing ten detection methods." *AISec*. 2017.



### **Dimensionality Reduction**



Bhagoji, Arjun Nitin, Daniel Cullina, and Prateek Mittal. "Dimensionality reduction as a defense against evasion attacks on machine learning classifiers." *arXiv:1704.02654* 2.1 (2017).



## **Existing Methods**

- Secondary Classification Methods (二级分类法)
- Principle Component Analysis (主成分分析法, PCA)
- Distribution Detection Methods (分布检测法)
- Prediction Inconsistency (预测不一致性)
- Reconstruction Inconsistency (重建不一致性)
- Trapping Based Detection (诱捕检测法)



### **Distribution Detection**

Maximum Mean Discrepancy (MMD)

1. 在  $D_1$  和  $D_2$  上计算  $a = MMD(\mathcal{K}, D_1, D_2);$ 

2. 对 D<sub>1</sub> 和 D<sub>2</sub> 中的样本顺序做随机打乱得到对应的 D'<sub>1</sub> 和 D'<sub>2</sub>;

3. 在  $D'_1$  和  $D'_2$  上计算  $b = MMD(\mathcal{K}, D'_1, D'_2);$ 

4. 如果 a < b 则拒绝原假设, 即  $D_1$  和  $D_2$  来自不同分布;

5. 重复执行步骤 1-4 很多次(1万次),计算原假设被拒绝的比例作为 *p*-值。

Two datasets:  $D_1$  vs.  $D_2$  $MMD(\mathcal{K}, D_1, D_2) = \sup_{k \in \mathcal{K}} \left(\frac{1}{n} \sum_{i=1}^n k(D_1^i) - \frac{1}{m} \sum_{i=1}^m k(D_2^i)\right)$ 



### **Distribution Detection**

**Kernel Density Estimation (KDE)** 



Adversarial examples are in low density space



Feinman, Reuben, et al. "Detecting adversarial samples from artifacts." arXiv preprint arXiv:1703.00410 (2017).

### **Distribution Detection**

**Kernel Density Estimation (KDE)** 

$$KDE(\boldsymbol{x}) = \frac{1}{|X_t|} \sum_{\boldsymbol{s} \in X_t} \exp(\frac{|\boldsymbol{z}(\boldsymbol{x}) - \boldsymbol{z}(\boldsymbol{s})|^2}{\sigma^2})$$



Adversarial examples are in low density space



Feinman, Reuben, et al. "Detecting adversarial samples from artifacts." arXiv preprint arXiv:1703.00410 (2017).

### **Bypassing 10 Detection Methods**

Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods. *Carlini and Wagner, AlSec 2017.* 





#### **Definition (Local Intrinsic Dimensionality)**

Given a data sample  $x \in X$ , let r > 0 be a random variable denoting the distance from x to other data samples. The *local intrinsic dimension* of x at distance r is

$$\operatorname{LID}_{F}(r) \triangleq \frac{r \cdot F'(r)}{F(r)}$$

wherever the limit exists.



#### Adversarial examples are in high dimensional subspaces



Characterizing Adversarial Subspace Using Local Intrinsic Dimensionality. *Ma et al. ICLR 2018* 

#### **Adversarial Subspaces and Expansion Dimension:**

#### **Expansion Dimension:**

Two balls of radius r<sub>1</sub> and r<sub>2</sub>, dimension m can be deduced from ratios of volumes:

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}$$

- Related to the Expansion Dimension (Karger and Ruhl 2002, Houle et al. 2012)
- $V_1$  and  $V_2$  estimated by the numbers of points contained in the two balls.





#### **Estimation of LID:**

• Hill (MLE) estimator (*Hill 1975, Amsaleg et al. 2015*):

$$\widehat{\text{LID}}(x) = -\left(\frac{1}{k}\sum_{i=1}^{k}\log\frac{r_i(x)}{r_k(x)}\right)^{-1},$$

 $r_i$  is the distance of x to its  $i^{th}$  nearest neighbor.



- Based on Extreme Value Theory:
  - $\circ$  Nearest neighbor distances are extreme events.
  - Lower tail distribution follows Generalized Pareto
     Distribution (GPD).





#### **Interpretation of LID for Adversarial Subspaces:**

- LID directly measures expansion rate of local distance distributions.
- The expansion of adversarial subspace is higher than normal data subspace.
- LID assesses the space-filling capability of the subspace, based on the distance distribution of the example to its neighbors.







• LID of adversarial examples (red) are higher



• LID at deeper layers are more differentiable



Characterizing Adversarial Subspace Using Local Intrinsic Dimensionality. Ma et al. ICLR 2018

Algorithm 7.1 训练 LID 对抗样本检测器 **输入:** x: 原始训练集; f(x): 已训练的神经网络, 共  $l \in k$ : 近邻样本数量 1: 初始化检测器训练集: LID<sub>neg</sub>=[], LID<sub>pos</sub>=[] 2: for  $B_{\text{norm}}$  in  $\boldsymbol{x}$  do  $B_{adv} := 对抗攻击本批样本 B_{norm}$ 3:  $N = |B_{\rm norm}|$ 4: 初始化 LID 特征集 LID<sub>norm</sub>, LID<sub>adv</sub> 为全零矩阵(维度均为 [n, l]) 5:for i in [1, l] do 6: 抽取中间层特征:  $A_{\text{norm}} = f^i(B_{\text{norm}}), A_{\text{adv}} = f^i(B_{\text{adv}})$ 7: for j in [1, n] do 8:  $\operatorname{LID}_{\operatorname{norm}}[j,i] = -\left(\frac{1}{k}\sum_{i=1}^{k}\log\frac{r_i(A_{\operatorname{norm}}[j],A_{\operatorname{norm}})}{r_k(A_{\operatorname{norm}}[j],A_{\operatorname{norm}})}\right)^{-1}$ 9:  $\operatorname{LID}_{\operatorname{adv}}[j,i] = -\left(\frac{1}{k}\sum_{i=1}^{k}\log\frac{r_i(A_{\operatorname{adv}}[j],A_{\operatorname{norm}})}{r_k(A_{\operatorname{adv}}[i],A_{\operatorname{norm}})}\right)^{-1}$ 10:  $LID_{neg}.append(LID_{norm}), LID_{pos}.append(LID_{adv})$ 11: 12: 在数据集  $D = \{(LID_{neg}, y = 0), (LID_{pos}, y = 1)\}$  上训练检测器 g **输出**: 检测器 g



#### **Experiments & Results:**

| Dataset      | Feature | FGM   | BIM-a | BIM-b | JSMA  | Opt   |
|--------------|---------|-------|-------|-------|-------|-------|
|              | KD      | 78.12 | 98.14 | 98.61 | 68.77 | 95.15 |
| MNIST        | BU      | 32.37 | 91.55 | 25.46 | 88.74 | 71.30 |
|              | LID     | 96.89 | 99.60 | 99.83 | 92.24 | 99.24 |
| CIFAR-<br>10 | KD      | 64.92 | 68.38 | 98.70 | 85.77 | 91.35 |
|              | BU      | 70.53 | 81.60 | 97.32 | 87.36 | 91.39 |
|              | LID     | 82.38 | 82.51 | 99.78 | 95.87 | 98.94 |
| SVHN         | KD      | 70.39 | 77.18 | 99.57 | 86.46 | 87.41 |
|              | BU      | 86.78 | 84.07 | 86.93 | 91.33 | 87.13 |
|              | LID     | 97.61 | 87.55 | 99.72 | 95.07 | 97.60 |

Characterizing Adversarial Subspace Using Local Intrinsic Dimensionality. Ma et al. ICLR 2018

#### **Experiments & Results:**

| Train \ Test attack |     | FGM   | BIM-a | BIM-b | JSMA  | Opt   |
|---------------------|-----|-------|-------|-------|-------|-------|
|                     | KD  | 64.92 | 69.15 | 89.71 | 85.72 | 91.22 |
| FGSM                | BU  | 70.53 | 81.67 | 2.65  | 86.79 | 91.27 |
|                     | LID | 82.38 | 82.30 | 91.61 | 89.93 | 93.32 |

Detectors trained on simple attacks FGSM can detect complex attacks



Characterizing Adversarial Subspace Using Local Intrinsic Dimensionality. Ma et al. ICLR 2018

#### An Improved Detector of LID

$$\widehat{\text{LID}}(x) = -\left(\frac{1}{k} \sum_{i=1}^{k} \log \frac{r_i(x)}{r_k(x)}\right)^{-1}$$
$$\overrightarrow{\text{LID}}(x)[i] = -\log \frac{r_i(x)}{r_k(x)}$$



https://arxiv.org/pdf/2212.06776.pdf

### An Improved Detector of LID

| Table 1: Results. ( | Comparison of the | original LID meth         | od with our j | proposed multiL | D on dif | ferent datasets. | We report the |
|---------------------|-------------------|---------------------------|---------------|-----------------|----------|------------------|---------------|
| AUC and F1 score    | as mean and varia | nce over three evaluation | ations with   | andomly drawn   | est samp | oles.            |               |

|                  |                  | CIFA            | AR10             |                  |                   | CIFA             | ImageNet          |                  |                   |                 |  |  |
|------------------|------------------|-----------------|------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|-----------------|--|--|
| Attacks          | WRN              | 28-10           | VGG16            |                  | WRN               | WRN 28-10        |                   | VGG16            |                   | 50-2            |  |  |
|                  | AUC              | F1              | AUC              | F1               | AUC               | <b>F1</b>        | AUC               | F1               | AUC               | F1              |  |  |
| original LID [?] |                  |                 |                  |                  |                   |                  |                   |                  |                   |                 |  |  |
| FGSM             | 99.5±0.2         | 97.3±7.0        | 90.1±13.4        | 83.2±13.9        | $100.0 {\pm} 0.0$ | 99.6±0.0         | 83.6±11.7         | 75.1±21.3        | 89.1±4.4          | 81.6±7.8        |  |  |
| BIM              | $96.9 {\pm} 1.5$ | $90.5 \pm 4.2$  | $92.8{\pm}2.1$   | 86.5±3.3         | $98.2{\pm}0.0$    | $92.2{\pm}0.0$   | $84.8 {\pm} 10.0$ | $75.6{\pm}11.1$  | $100.0\pm0.0$     | $98.9{\pm}1.0$  |  |  |
| PGD              | 99.1±0.3         | 95.3±1.8        | $97.5 {\pm} 0.0$ | $94.6 {\pm} 0.5$ | $98.0{\pm}0.0$    | $93.5 {\pm} 0.0$ | $91.8{\pm}0.8$    | $83.9{\pm}0.4$   | $100.0{\pm}0.0$   | $100.0{\pm}0.0$ |  |  |
| AA               | $96.7 {\pm} 0.2$ | 89.4±3.4        | 90.0±1.3         | $81.6{\pm}1.8$   | $99.2{\pm}0.1$    | $96.5 {\pm} 0.4$ | $86.8{\pm}9.8$    | $78.6 {\pm} 2.3$ | $100.0{\pm}0.0$   | $99.8{\pm}0.1$  |  |  |
| DF               | 94.7±31.9        | $88.7 \pm 55.4$ | 87.3±4.2         | $77.2 \pm 4.6$   | $60.7 {\pm} 0.0$  | $56.4 {\pm} 0.0$ | $60.5 {\pm} 2.8$  | $56.1 \pm 1.8$   | $60.3 \pm 2.2$    | $56.5 \pm 2.9$  |  |  |
| CW               | $91.2{\pm}63.6$  | $83.9{\pm}54.5$ | $85.2{\pm}1.7$   | $75.3 \pm 3.5$   | $56.3{\pm}0.1$    | $52.5 \pm 2.6$   | $66.0{\pm}6.1$    | $61.0{\pm}0.9$   | $62.0{\pm}0.5$    | $59.0{\pm}2.0$  |  |  |
|                  |                  |                 | multiLID +       | improved lay     | er setting + RI   | F or short: m    | ultiLID (ours     | )                |                   |                 |  |  |
| FGSM             | $100.0{\pm}0.0$  | $100.0{\pm}0.0$ | $100.0{\pm}0.0$  | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0\pm0.0$    | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | 100.0±0.0       |  |  |
| BIM              | $100.0{\pm}0.0$  | $100.0{\pm}0.0$ | $100.0{\pm}0.0$  | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0\pm0.0$     | $100.0{\pm}0.0$ |  |  |
| PGD              | $100.0{\pm}0.0$  | $100.0{\pm}0.0$ | $100.0{\pm}0.0$  | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0 {\pm} 0.0$ | $100.0{\pm}0.0$ |  |  |
| AA               | $100.0{\pm}0.0$  | $100.0{\pm}0.0$ | $100.0{\pm}0.0$  | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0\pm0.0$     | $100.0{\pm}0.0$ |  |  |
| DF               | $100.0{\pm}0.0$  | $100.0{\pm}0.0$ | $100.0{\pm}0.0$  | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$ |  |  |
| CW               | $100.0{\pm}0.0$  | $100.0{\pm}0.0$ | 100.0±0.0        | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$  | $100.0{\pm}0.0$   | $100.0{\pm}0.0$ |  |  |



#### Mahalanobis Distance (MD)

□ The MD of a data point *x* to a distribution *Q*:

$$d_M(\boldsymbol{x}) = \sqrt{(\boldsymbol{x} - \mu)^\top \Sigma^{-1} (\boldsymbol{x} - \mu)}$$
  $\mu: sates \boldsymbol{x}$ 

μ: sample mean in QΣ: covariance matrix

**D** The MD of between two data points:

$$d_M(\boldsymbol{x}_i, \boldsymbol{x}_2) = \sqrt{(\boldsymbol{x}_i - \boldsymbol{x}_2)^\top \Sigma^{-1} (\boldsymbol{x}_i - \boldsymbol{x}_2)}$$

#### Mahalanobis Distance (MD)

Given a mode f and training dataset D, the MD of a sample x is defined as

$$d_{M}(\boldsymbol{x}) = \max_{c} -(f^{L-2}(\boldsymbol{x}) - \mu_{c})\Sigma^{-1}(f^{L-2}(\boldsymbol{x}) - \mu_{c})$$

$$\mu_{c} = \frac{1}{N_{c}} \sum_{\boldsymbol{x} \in X_{c}} f^{L-2}(\boldsymbol{x}) \qquad \qquad f^{L-2}(\boldsymbol{x}) \qquad \qquad f^{L-2}(\boldsymbol{x})$$

$$\Sigma_{c} = \frac{1}{N_{c}} \sum_{c} \sum_{\boldsymbol{x} \in X_{c}} (f^{L-2}(\boldsymbol{x}) - \mu_{c})^{\top} \qquad \qquad N_{c}: \neq N_{c$$

 $f^{L-2}$ : 深度神经网络倒数第二层的输出  $u_c$ : 类别C的样本特征均值  $\Sigma_c$ :类别C的样本间协方差矩阵  $N_c$ :类别C的样本数量



Algorithm 7.2 基于马氏距离的对抗样本检测

- **输入:** 测试样本 x, 逻辑回归检测器权重  $\alpha_l$ , 噪声大小  $\epsilon$  以及高斯分布参数 { $\mu_{l,c}, \Sigma_l : \forall l, c$ }
- 1: 初始化分数向量:  $M(\mathbf{x}) = [M_l : \forall l]$
- 2: for 每一层  $l = 1, \cdots, L$  do
- 3: 寻找最近的类别:  $\hat{c} = \arg\min_c (f^l(\boldsymbol{x}) \mu_{l,c})^\top \Sigma_l^{-1} (f^l(\boldsymbol{x}) \mu_{l,c})$
- 4: 向样本中添加噪声:  $\hat{\boldsymbol{x}} = \boldsymbol{x} \vdash \epsilon \cdot \operatorname{sign} \left( \Delta_x (f^l(\boldsymbol{x}) \mu_{l,c})^\top \Sigma_l^{-1} (f^l(\boldsymbol{x}) \mu_{l,c}) \right)$
- 5: 计算置信度:  $M_l = \max_c (f^l(\boldsymbol{x}) \mu_{l,c})^\top \Sigma_l^{-1} (f^l(\boldsymbol{x}) \mu_{l,c})$

**输出**: 样本 x 的总检测置信度  $\sum_{l} \alpha_{l} M_{l}$ 

#### Mahalanobis Distance (MD)

#### **Experiments & Results:**

| Model    | Dataset   | Same               | Detection of known attack |              |          |       | Detection of unknown attack |       |          |       |  |
|----------|-----------|--------------------|---------------------------|--------------|----------|-------|-----------------------------|-------|----------|-------|--|
| Model    | (model)   | Score              | FGSM                      | BIM          | DeepFool | CW    | FGSM (seen)                 | BIM   | DeepFool | CW    |  |
|          |           | KD+PU [7]          | 85.96                     | 96.80        | 68.05    | 58.72 | 85.96                       | 3.10  | 68.34    | 53.21 |  |
|          | CIFAR-10  | LID 22             | 98.20                     | 99.74        | 85.14    | 80.05 | 98.20                       | 94.55 | 70.86    | 71.50 |  |
|          |           | Mahalanobis (ours) | 99.94                     | <b>99.78</b> | 83.41    | 87.31 | 99.94                       | 99.51 | 83.42    | 87.95 |  |
|          |           | KD+PU [7]          | 90.13                     | 89.69        | 68.29    | 57.51 | 90.13                       | 66.86 | 65.30    | 58.08 |  |
| DenseNet | CIFAR-100 | LID 22             | 99.35                     | 98.17        | 70.17    | 73.37 | 99.35                       | 68.62 | 69.68    | 72.36 |  |
|          |           | Mahalanobis (ours) | 99.86                     | 99.17        | 77.57    | 87.05 | 99.86                       | 98.27 | 75.63    | 86.20 |  |
|          | SVHN      | KD+PU 7            | 86.95                     | 82.06        | 89.51    | 85.68 | 86.95                       | 83.28 | 84.38    | 82.94 |  |
|          |           | LID 22             | 99.35                     | 94.87        | 91.79    | 94.70 | 99.35                       | 92.21 | 80.14    | 85.09 |  |
|          |           | Mahalanobis (ours) | 99.85                     | 99.28        | 95.10    | 97.03 | 99.85                       | 99.12 | 93.47    | 96.95 |  |
|          |           | KD+PU [7]          | 81.21                     | 82.28        | 81.07    | 55.93 | 83.51                       | 16.16 | 76.80    | 56.30 |  |
|          | CIFAR-10  | LID 22             | 99.69                     | 96.28        | 88.51    | 82.23 | 99.69                       | 95.38 | 71.86    | 77.53 |  |
|          |           | Mahalanobis (ours) | 99.94                     | 99.57        | 91.57    | 95.84 | 99.94                       | 98.91 | 78.06    | 93.90 |  |
|          |           | KD+PU [7]          | 89.90                     | 83.67        | 80.22    | 77.37 | 89.90                       | 68.85 | 57.78    | 73.72 |  |
| ResNet   | CIFAR-100 | LID 22             | 98.73                     | 96.89        | 71.95    | 78.67 | 98.73                       | 55.82 | 63.15    | 75.03 |  |
|          |           | Mahalanobis (ours) | 99.77                     | 96.90        | 85.26    | 91.77 | 99.77                       | 96.38 | 81.95    | 90.96 |  |
|          |           | KD+PU [7]          | 82.67                     | 66.19        | 89.71    | 76.57 | 82.67                       | 43.21 | 84.30    | 67.85 |  |
|          | SVHN      | LID 22             | 97.86                     | 90.74        | 92.40    | 88.24 | 97.86                       | 84.88 | 67.28    | 76.58 |  |
|          |           | Mahalanobis (ours) | 99.62                     | 97.15        | 95.73    | 92.15 | 99.62                       | 95.39 | 72.20    | 86.73 |  |



## **Existing Methods**

- Secondary Classification Methods (二级分类法)
- Principle Component Analysis (主成分分析法, PCA)
- Distribution Detection Methods (分布检测法)
- □ Prediction Inconsistency (预测不一致性)
- Reconstruction Inconsistency (重建不一致性)
- Trapping Based Detection (诱捕检测法)



#### **Bayes Uncertainty**

#### **Bayesian Uncertainty (BU)**

$$U(\boldsymbol{x}) = \frac{1}{T} \sum_{i=1}^{T} \hat{\boldsymbol{y}}_{i}^{\top} \hat{\boldsymbol{y}}_{i} - \left(\frac{1}{T} \sum_{i=1}^{T} \hat{\boldsymbol{y}}_{i}\right)^{\top} \left(\frac{1}{T} \sum_{i=1}^{T} \hat{\boldsymbol{y}}_{i}\right)$$







With Dropout

Use test time dropout to get randomized networks

*T*: the number of randomization.



#### **Feature Squeezing**





Bit depth reduction

Squeezing clean and adv examples

Reducing input dimensionality improves robustness
 The prediction inconsistency before and after squeezing can detect advs



Xu et al. "Feature squeezing: Detecting adversarial examples in deep neural networks." arXiv:1704.01155 (2017).

#### **Random Transformation**



□ The prediction of advs will change after random transformations



Tian et al. "Detecting adversarial examples through image transformation." AAAI 2018.

Log-Odds



*f<sub>y</sub>*: 类别y对应的逻辑输出 *f<sub>z</sub>*: 类别z对应的逻辑输出

蓝色点:原始样本 红色点:对抗样本

**Add** random noise to the input

$$x' = x + \eta, \qquad \eta \sim \mathcal{N}(\mu, \delta^2)$$

 $f(x') \approx f(x)$  ??



Roth et al. "The odds are odd: A statistical test for detecting adversarial examples." ICML 2019.

Log-Odds





## **Existing Methods**

- Secondary Classification Methods (二级分类法)
- Principle Component Analysis (主成分分析法, PCA)
- Distribution Detection Methods (分布检测法)
- Prediction Inconsistency (预测不一致性)
- □ Reconstruction Inconsistency (重建不一致性)
- Trapping Based Detection (诱捕检测法)



#### **Detector-Reformer**



#### □ 原则:对抗样本无法重建

$$E(\boldsymbol{x}) = \|\boldsymbol{x} - AE(\boldsymbol{x})\|_p$$

AE: Autoencoder E(x): reconstruction error







#### **Detector-Reformer**





## **Existing Methods**

- Secondary Classification Methods (二级分类法)
- Principle Component Analysis (主成分分析法, PCA)
- Distribution Detection Methods (分布检测法)
- Prediction Inconsistency (预测不一致性)
- Reconstruction Inconsistency (重建不一致性)
- Trapping Based Detection (诱捕检测法)



## Neural Fingerprinting (NFP)



#### **Detect advs with N=2 fingerprints**

Fingerprint is defined as:

$$\mathcal{X}^{i,j} = (\Delta \boldsymbol{x}^i, \Delta y^{i,j}), i = 1, \cdots, N, \quad j = 1, \cdots, C$$

Dathathri, Sumanth, et al. "Detecting adversarial examples via neural fingerprinting." arXiv:1803.03870 (2018).



### Neural Fingerprinting (NFP)

How to verify the fingerprint?

$$D(\boldsymbol{x}, f, \mathcal{X}^{\dots j}) = \frac{1}{N} \sum_{i=1}^{N} ||f(\boldsymbol{x} + \Delta x^{i}) - f(\boldsymbol{x}) - \Delta y^{i,j}||_{2}$$

 $\Delta x_i$  is class-independent noise





Dathathri, Sumanth, et al. "Detecting adversarial examples via neural fingerprinting." arXiv:1803.03870 (2018).

## Benchmarking

#### Results 2

| Attack                        | KDE_DR | LID_DR | NSS_DR | FS_DR | MagNet_DR | NIC_DR | MultiLID_DR |
|-------------------------------|--------|--------|--------|-------|-----------|--------|-------------|
| fgsm_0.03125                  | 66.47  | 50.0   | 84.33  | 52.51 | 69.58     | 94.32  | 92.81       |
| fgsm_0.0625                   | 63.96  | 78.98  | 92.87  | 49.84 | 94.31     | 94.79  | 93.46       |
| fgsm_0.125                    | 61.44  | 83.97  | 92.85  | 49.27 | 94.33     | 94.82  | 93.86       |
| bim_0.03125                   | 69.43  | 50.11  | 67.42  | 93.18 | 52.25     | 90.55  | 92.9        |
| bim_0.0625                    | 69.05  | 66.21  | 86.82  | 93.98 | 93.93     | 92.37  | 93.54       |
| bim_0.125                     | 69.01  | 92.1   | 92.6   | 93.99 | 94.11     | 94.44  | 94.05       |
| pgdi_0.03125                  | 71.04  | 50.11  | 69.85  | 93.81 | 53.52     | 90.72  | 92.86       |
| pgdi_0.0625                   | 70.95  | 68.06  | 89.41  | 93.99 | 94.08     | 94.07  | 93.59       |
| pgdi_0.125                    | 70.37  | 92.83  | 92.78  | 93.99 | 94.11     | 94.68  | 94.46       |
| cwi                           | 75.34  | 50.0   | 51.73  | 48.16 | 50.28     | 87.74  | 98.02       |
| deepfool                      | 81.68  | 50.0   | 50.44  | 48.35 | 50.05     | 93.11  | 98.06       |
| spatial transofrmation attack | 68.88  | 83.77  | 78.01  | 47.71 | 52.41     | 91.33  | 99.67       |
| square attack                 | 75.36  | 80.76  | 48.89  | 47.72 | 98.52     | 94.67  | 99.22       |
| adversarial patch             | 52.43  | 64.11  | 87.39  | 48.67 | 80.15     | 94.58  | 99.76       |





# 谢谢!

